Parallel distributed-memory simplex for large-scale stochastic LP problems

نویسندگان

  • Miles Lubin
  • J. A. Julian Hall
  • Cosmin G. Petra
  • Mihai Anitescu
چکیده

We present a parallelization of the revised simplex method for large extensive forms of two-stage stochastic linear programming (LP) problems. These problems have been considered too large to solve with the simplex method; instead, decomposition approaches based on Benders decomposition or, more recently, interiorpoint methods are generally used. However, these approaches do not provide optimal basic solutions, which allow for efficient hot-starts (e.g., in a branch-and-bound context) and can provide important sensitivity information. Our approach exploits the dual block-angular structure of these problems inside the linear algebra of the revised simplex method in a manner suitable for high-performance distributed-memory clusters or supercomputers. While this paper focuses on stochastic LPs, the work is applicable to all problems with a dual block-angular structure. Our implementation is competitive in serial with highly efficient sparsity-exploiting simplex codes and achieves significant relative speed-ups when run in parallel. Additionally, very large problems with hundreds of millions of variables have been successfully solved to optimality. This is the largest-scale parallel sparsity-exploiting revised simplex implementation that has been developed to date and the first truly distributed solver. It is built on novel analysis of the linear algebra for dual block-angular LP problems when solved by using the revised simplex method and a novel parallel scheme for applying product-form updates. Miles Lubin · Cosmin G. Petra ·Mihai Anitescu Mathematics and Computer Science Division, Argonne National Laboratory Argonne, IL 60439-4844, USA E-mail: [email protected], [email protected], [email protected] J. A. Julian Hall School of Mathematics, University of Edinburgh JCMB, King’s Buildings, Edinburgh EH9 3JZ, UK E-mail: [email protected] 1 Also published as Preprint ANL/MCS-P2075-0412 2 Miles Lubin et al.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COAP 2015 Best Paper Prize

Each year, the editorial board of computational optimization and applications (COAP) selects a paper from the preceding year’s publications for the Best Paper Award. In 2015, 92 papers were published by COAP. The recipients of the 2015 Best Paper Award are Qi Huangfu of the FICO Xpress Team and Julian Hall of the University of Edinburgh for their paper “Novel update techniques for the revised s...

متن کامل

A parallel implementation of an exterior point algorithm for linear programming problems

The simplex method is perhaps the most widely used method for solving linear programming (LP) problems. The computation time of simplex type algorithms depends on the basis inverse that occurs in each iteration. Parallelizing simplex type algorithms is one of the most challenging problems. The aim of this paper is to present a parallel implementation of the primal exterior point simplex algorit...

متن کامل

Towards a practical parallelisation of the simplex method

The simplex method is frequently the most efficient method of solving linear programming (LP) problems. This paper reviews previous attempts to parallelise the simplex method in relation to efficient serial simplex techniques and the nature of practical LP problems. For the major challenge of solving general large sparse LP problems, there has been no parallelisation of the simplex method that ...

متن کامل

A High Performance Dual Revised Simplex Solver

When solving families of related linear programming (LP) problems and many classes of single LP problems, the simplex method is the preferred computational technique. Hitherto there has been no efficient parallel implementation of the simplex method that gives good speed-up on general, large sparse LP problems. This paper presents a variant of the dual simplex method and a prototype parallelisa...

متن کامل

Nelder-Mead Simplex Optimization Routine for Large-Scale Problems: A Distributed Memory Implementation

The Nelder-Mead simplex method is an optimization routine that works well with irregular objective functions. For a function of n parameters, it compares the objective function at the n + 1 vertices of a simplex and updates the worst vertex through simplex search steps. However, a standard serial implementation can be prohibitively expensive for optimizations over a large number of parameters. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2013